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One of the main conclusions of the work undertaken in working group 3 is that the 

context of the prevalence of infection matters when choosing a method for quantifying the 

probability of freedom from infection. When infection is absent from an area, the objective is 

to prove that it has not been introduced to secure trade with partners outside the area. The level 

of interest is in this case the whole area. The scenario tree methodology and more recent 

simulation methods are well suited to this context (Martin et al., 2007a; b; Rosendal et al., 

2020). When the infection is still endemic, as in the initial phase of an eradication programme, 

the objective is to identify herds that are free from the infection within the programme to secure 

trade within and outside the area. In this case, historical data from the surveillance programme 

can be used to make inference and enhance the identification of infected herds. The STOC free 

model was designed to operate in this context (Madouasse et al., 2022). Below, we provide 

more detail on these ideas. 

The assumption made in most work on proving disease freedom is that the disease is 

truly absent from the region or country of interest. The methodological questions revolve 

around quantifying the evidence of absence from the absence of evidence. Because it is 

impossible to quantify uncertainty from a hypothesis of complete absence, while this 

uncertainty exists, most methods quantify the probability of obtaining a negative surveillance 

outcome if the disease were present at a chosen (low) prevalence called the design prevalence.  

A historical perspective on the methods developed for quantifying the probability of 

freedom from infection is of interest to understand the state-of-the-art. Assuming disease 

absence from a region or a country, early work therefore focused on determining a sample size 

to prove that the infection prevalence was not greater than a chosen design prevalence with a 
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certain level of confidence. This was initially done assuming homogeneous populations, in 

which all the animals had a similar probability of being infected, and a single perfect test was 

performed for detection of infection. These assumptions were later relaxed by considering the 

imperfect sensitivity of the tests and the fact that animals are usually clustered within farms 

(Hanson et al., 2003; Verdugo et al., 2015;). The impact of imperfect specificity is usually 

neglected, because any positive test result will be investigated (diagnostic follow-up) until 

either proven to be a false positive or confirmed positive. In this sense, the proportion of false 

positives is reduced to 0, yielding a perfect Sp. A later refinement was the inclusion of 

differences in the probability of infection between different animals or herds allowing for the 

estimation of probabilities of freedom from infection from surveillance systems that relied on 

risk-based sampling (FAO, 2014). Risk-based sampling permits to increase the effectiveness 

of surveillance by focusing surveillance efforts on areas where the infection is more likely to 

be found. The scenario tree method was designed to estimate a probability of freedom from 

infection and surveillance sensitivity from complex surveillance data with differences in the 

probability of infection in different components of the surveillance system (risk-based 

sampling) as well as imperfect sensitivity of the testing procedure (imperfect test sensitivity, 

sampling, hierarchical structure of the data with animals nested within farms). This, together 

with the fact that simulations could be run on spreadsheets led to this method being widely 

used for substantiating freedom from infection (Norström et al., 2014). More recent simulation 

models use the same principles as the scenario tree methodology.  

When the infection is absent from the area under investigation, it has to be (re-

introduced to be present. Typically, this can be considered as infection emergence and should 

be a rare event with people making efforts to prevent the introduction of the infection through 
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the routes of emergence perceived as important. Incorporating a probability of introduction into 

a model of infection freedom is therefore a difficult task. Probabilities are usually thought of 

as the frequency of a certain event of interest under a large number of instances where that 

event could happen, such as the frequency of heads in a large number of coin flips. It is almost 

impossible to estimate a probability of introduction from data, as there are no or not enough 

similar cases of disease introduction in similar contexts. In this case, probabilities can be 

conceived as beliefs, which may have a rational basis, about the probability of introduction. 

The first view represents a frequentist perspective on probabilities and the second a Bayesian 

perspective. This is important to reflect upon when designing models and communicating their 

outcome. More generally, when the infection is absent, the whole estimation process relies on 

simulating its presence or its introduction under different scenarios, and out of these, count the 

proportion of times this infection would be detected by the surveillance system. Therefore, all 

the methods considered can be seen as conceptualising the problem of substantiating freedom 

from infection as a Bayesian problem in which what is evaluated is the probability of the 

hypotheses, notably in the form of a design prevalence, given the surveillance data collected. 

This explains why in some papers, the probability of the infection being present before 

collecting the data is referred to as the prior and the estimated probability of infection freedom 

as the posterior. 

When the infection is still endemic, data from infected herds can be used to estimate 

strengths of association between risk factors and the probability of infection, thereby improving 

the detection of infection in herds not yet detected. This is the approach followed in the 

Bayesian models proposed by Heisey et al., (2014) and Madouasse et al., (2022). By exploiting 

the correlation in longitudinal test results, the model by Madouasse et al., (2022) also estimates 

https://www.zotero.org/google-docs/?tJ0CEL
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the herd-level sensitivity and specificity of the tests used in the surveillance programme as well 

as the monthly probabilities of getting and eliminating the infection. By making inference from 

surveillance data, these models are less reliant on hypotheses whose validity can be hard to 

assess and provide predictions that are adapted to the context in which surveillance is 

performed. Such models can also produce knowledge that is transferable to other surveillance 

systems. However, when the infection is absent or rare, there is no added value to these 

Bayesian inference and prediction models since in those cases, they will perform simulations 

from the prior distributions used as input. 

The definition of what is an infected herd can also be difficult to formulate. For 

example, for bovine viral diarrhoea virus, there are different types of infected animals that do 

not pose the same epidemiological risk and have different diagnostic test results. Persistently 

infected (PI) animals are the main source of infection for other animals. They shed massive 

amounts of virus but do not produce antibodies. Transiently infected animals shed the virus for 

a few weeks and produce antibodies against the virus for many years. Unborn PI foetuses are 

epidemiologically important, but it is not currently possible to detect infection before birth. The 

definition of what makes an infected herd in a surveillance programme could include or exclude 

either of the latter two categories. Translating sensitivity or specificity at the animal level into 

their equivalent at the herd level can therefore be a real challenge. The issue can be difficult to 

deal with when using latent class models. With these models, the latent class, that should 

correspond to the definition of what the epidemiologists mean by infected herds, will depend 

on the prior distributions used for the sensitivity and the specificity of the different diagnostic 

tests used. As these sensitivities and specificities can be unknown and modelled using best 

guesses, the model may work with a latent class that is different from the intended definition 
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of an infected herd. The same problem also exists with simulation-based models that use 

sensitivities elicited from experts. However, misspecification of model parameters is 

impossible to detect because, in the worst case, the infection will emerge once and be missed 

which can always be considered compatible with a surveillance sensitivity that is lower than 

one. The definition of sensitivities and specificities at the herd level is therefore a research gap 

that needs to be filled. A modelling framework needs to be developed to estimate these 

parameters from animal data and the required data need to be identified.  

The objective of any method that quantifies a probability of freedom from infection 

from surveillance data is (i) to evaluate the confidence in a country’s freedom from infection 

claim or (ii) to assist stakeholders in making decisions about which countries or herds to trade 

with. The output of such methods should therefore be understandable and usable by 

stakeholders. Following (Cameron, 2012), the most reported outputs are the sensitivity of 

surveillance as well as the probability of freedom from infection, which can be easily obtained 

using the scenario tree method. The STOC free model returns a posterior distribution for the 

probability of infection which can be translated into a distribution for the probability of freedom 

from infection. However, translating statistical distributions into information that is usable by 

decision makers can be challenging. Further work on communicating the output of quantitative 

models to decision makers should address this question. In addition to the specific output from 

methods for assessment of disease freedom, there is also a need to put this result into context 

and to make the information that will support decision more complete by adding qualitative 

aspects. Guidelines for incorporating necessary information about surveillance attributes have 

been proposed e.g. by RISKSUR (Peyre et al., 2019) and AHSURED (Comin et al., 2019). 

https://www.zotero.org/google-docs/?HKaaN6
https://www.zotero.org/google-docs/?SMx45d
https://www.zotero.org/google-docs/?RUZH3c
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Outputs related to the costs of error, especially the cost of declaring an infected country 

as free from infection, have been proposed. Although the cost of different surveillance 

programme designs can be estimated (Meyer et al., 2019), the cost of the consequences of an 

undetected emerging infectious disease are harder to predict. A first step in this direction 

consists in estimating the time to detection and the size of the outbreak at detection using 

models incorporating population dynamics and disease spread as proposed by (Rosendal et al., 

2020). 

Another concern is the fact that when using any method, an assumption is that the 

available data accurately reflect what they are supposed to measure. This assumes an 

infrastructure that collects these data in a reliable way and that the modellers are aware of all 

the limitations of the data they have, and the outcomes of the model can relatively easily be 

interpreted to the ‘users’ (e.g. farm managers, traders, veterinary officials). 

Lastly, our work focused on cattle diseases. Most of the concepts and methods reviewed 

could be applied to other animal and plant species to quantify probabilities of absence of 

specific diseases in these species or even absence of these species. On the other hand, although 

few studies in fields not related to cattle farming were included in this work (e.g., Ramsey et 

al. 2009), future methodological development may benefit from considering more work 

conducted in other fields. There is a large number of scientific publications on the problem of 

evaluating the probability of absence of a species after an eradication programme. Sometimes, 

these species are problematic because they were introduced in a new environment in which 

they caused significant damage (Ramsey et al., 2009; Rout et al., 2014). At other times, the 

focus is on estimating the probability that a human disease has been eradicated following a 

https://www.zotero.org/google-docs/?gABeqY
https://www.zotero.org/google-docs/?NXHIIi
https://www.zotero.org/google-docs/?NXHIIi
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vaccination campaign. Although the problems may be different, the focus of these studies is on 

quantifying the evidence of absence from the absence of evidence and could therefore provide 

interesting ideas for such problems in cattle, and more broadly in livestock.  


